For conceptual design, engineers rely on conventional iterative (often manual) techniques. Emerging parametric models facilitate design space exploration based on quantifiable performance metrics, yet remain time-consuming and computationally expensive. Pure optimisation methods, however, ignore qualitative aspects (e.g. aesthetics or construction methods). This paper provides a performance-driven design exploration framework to augment the human designer through a Conditional Variational Autoencoder (CVAE), which serves as forward performance predictor for given design features as well as an inverse design feature predictor conditioned on a set of performance requests. The CVAE is trained on 18'000 synthetically generated instances of a pedestrian bridge in Switzerland. Sensitivity analysis is employed for explainability and informing designers about (i) relations of the model between features and/or performances and (ii) structural improvements under user-defined objectives. A case study proved our framework's potential to serve as a future co-pilot for conceptual design studies of pedestrian bridges and beyond.
translated by 谷歌翻译
2型糖尿病(T2DM)的早期诊断对于及时的治疗干预措施和生活方式改变至关重要。随着医学成像数据在许多患者群体中变得更广泛可用,我们试图研究是否可以在表格学习分类器模型中利用图像衍生的表型数据来预测T2DM的发病率,而无需使用侵入性血液实验室测量。我们表明,使用图像衍生表型的神经网络和决策树模型都可以预测患者T2DM状态的召回评分高达87.6%。我们还提出了与“ Syntha1c编码器”相同的结构的新颖使用,这些结构能够输出模仿血液血红蛋白A1C经验实验室测量值的可解释值。最后,我们证明了T2DM风险预测模型对输入矢量成分中小扰动的敏感性可用于预测从以前看不见的患者人群中取样的协变量的性能。
translated by 谷歌翻译
矩阵正常模型,高斯矩阵变化分布的系列,其协方差矩阵是两个较低尺寸因子的Kronecker乘积,经常用于模拟矩阵变化数据。张量正常模型将该家庭推广到三个或更多因素的Kronecker产品。我们研究了矩阵和张量模型中协方差矩阵的Kronecker因子的估计。我们向几个自然度量中的最大似然估计器(MLE)实现的误差显示了非因素界限。与现有范围相比,我们的结果不依赖于条件良好或稀疏的因素。对于矩阵正常模型,我们所有的所有界限都是最佳的对数因子最佳,对于张量正常模型,我们对最大因数和整体协方差矩阵的绑定是最佳的,所以提供足够的样品以获得足够的样品以获得足够的样品常量Frobenius错误。在与我们的样本复杂性范围相同的制度中,我们表明迭代程序计算称为触发器算法称为触发器算法的MLE的线性地收敛,具有高概率。我们的主要工具是Fisher信息度量诱导的正面矩阵的几何中的测地强凸性。这种强大的凸起由某些随机量子通道的扩展来决定。我们还提供了数值证据,使得将触发器算法与简单的收缩估计器组合可以提高缺乏采样制度的性能。
translated by 谷歌翻译
自我监督的代表学习使对比学习的进步推动了显着的跨利赛,这旨在学习嵌入附近积极投入对的转变,同时推动负对的对。虽然可以可靠地生成正对(例如,作为相同图像的不同视图),但是难以准确地建立负对对,定义为来自不同图像的样本,而不管它们的语义内容或视觉功能如何。对比学习中的一个基本问题正在减轻假底片的影响。对比假否定引起了两个代表学习的关键问题:丢弃语义信息和缓慢的收敛。在本文中,我们提出了识别错误否定的新方法,以及减轻其效果的两种策略,即虚假的消极消除和吸引力,同时系统地执行严格的评估,详细阐述了这个问题。我们的方法表现出对基于对比学习的方法的一致性改进。没有标签,我们在想象中的1000个语义课程中识别出具有40%的精度,并且在使用1%标签的FINETUNING时,在先前最先进的最先进的前1个精度的绝对提高5.8%的绝对提高。我们的代码可在https://github.com/gogle-research/fnc上获得。
translated by 谷歌翻译
Dataset distillation has emerged as a prominent technique to improve data efficiency when training machine learning models. It encapsulates the knowledge from a large dataset into a smaller synthetic dataset. A model trained on this smaller distilled dataset can attain comparable performance to a model trained on the original training dataset. However, the existing dataset distillation techniques mainly aim at achieving the best trade-off between resource usage efficiency and model utility. The security risks stemming from them have not been explored. This study performs the first backdoor attack against the models trained on the data distilled by dataset distillation models in the image domain. Concretely, we inject triggers into the synthetic data during the distillation procedure rather than during the model training stage, where all previous attacks are performed. We propose two types of backdoor attacks, namely NAIVEATTACK and DOORPING. NAIVEATTACK simply adds triggers to the raw data at the initial distillation phase, while DOORPING iteratively updates the triggers during the entire distillation procedure. We conduct extensive evaluations on multiple datasets, architectures, and dataset distillation techniques. Empirical evaluation shows that NAIVEATTACK achieves decent attack success rate (ASR) scores in some cases, while DOORPING reaches higher ASR scores (close to 1.0) in all cases. Furthermore, we conduct a comprehensive ablation study to analyze the factors that may affect the attack performance. Finally, we evaluate multiple defense mechanisms against our backdoor attacks and show that our attacks can practically circumvent these defense mechanisms.
translated by 谷歌翻译
We present a dynamic path planning algorithm to navigate an amphibious rotor craft through a concave time-invariant obstacle field while attempting to minimize energy usage. We create a nonlinear quaternion state model that represents the rotor craft dynamics above and below the water. The 6 degree of freedom dynamics used within a layered architecture to generate motion paths for the vehicle to follow and the required control inputs. The rotor craft has a 3 dimensional map of its surroundings that is updated via limited range onboard sensor readings within the current medium (air or water). Path planning is done via PRM and D* Lite.
translated by 谷歌翻译
While the capabilities of autonomous systems have been steadily improving in recent years, these systems still struggle to rapidly explore previously unknown environments without the aid of GPS-assisted navigation. The DARPA Subterranean (SubT) Challenge aimed to fast track the development of autonomous exploration systems by evaluating their performance in real-world underground search-and-rescue scenarios. Subterranean environments present a plethora of challenges for robotic systems, such as limited communications, complex topology, visually-degraded sensing, and harsh terrain. The presented solution enables long-term autonomy with minimal human supervision by combining a powerful and independent single-agent autonomy stack, with higher level mission management operating over a flexible mesh network. The autonomy suite deployed on quadruped and wheeled robots was fully independent, freeing the human supervision to loosely supervise the mission and make high-impact strategic decisions. We also discuss lessons learned from fielding our system at the SubT Final Event, relating to vehicle versatility, system adaptability, and re-configurable communications.
translated by 谷歌翻译
We present Muse, a text-to-image Transformer model that achieves state-of-the-art image generation performance while being significantly more efficient than diffusion or autoregressive models. Muse is trained on a masked modeling task in discrete token space: given the text embedding extracted from a pre-trained large language model (LLM), Muse is trained to predict randomly masked image tokens. Compared to pixel-space diffusion models, such as Imagen and DALL-E 2, Muse is significantly more efficient due to the use of discrete tokens and requiring fewer sampling iterations; compared to autoregressive models, such as Parti, Muse is more efficient due to the use of parallel decoding. The use of a pre-trained LLM enables fine-grained language understanding, translating to high-fidelity image generation and the understanding of visual concepts such as objects, their spatial relationships, pose, cardinality etc. Our 900M parameter model achieves a new SOTA on CC3M, with an FID score of 6.06. The Muse 3B parameter model achieves an FID of 7.88 on zero-shot COCO evaluation, along with a CLIP score of 0.32. Muse also directly enables a number of image editing applications without the need to fine-tune or invert the model: inpainting, outpainting, and mask-free editing. More results are available at https://muse-model.github.io
translated by 谷歌翻译
The visual dimension of cities has been a fundamental subject in urban studies, since the pioneering work of scholars such as Sitte, Lynch, Arnheim, and Jacobs. Several decades later, big data and artificial intelligence (AI) are revolutionizing how people move, sense, and interact with cities. This paper reviews the literature on the appearance and function of cities to illustrate how visual information has been used to understand them. A conceptual framework, Urban Visual Intelligence, is introduced to systematically elaborate on how new image data sources and AI techniques are reshaping the way researchers perceive and measure cities, enabling the study of the physical environment and its interactions with socioeconomic environments at various scales. The paper argues that these new approaches enable researchers to revisit the classic urban theories and themes, and potentially help cities create environments that are more in line with human behaviors and aspirations in the digital age.
translated by 谷歌翻译
Logic Mill is a scalable and openly accessible software system that identifies semantically similar documents within either one domain-specific corpus or multi-domain corpora. It uses advanced Natural Language Processing (NLP) techniques to generate numerical representations of documents. Currently it leverages a large pre-trained language model to generate these document representations. The system focuses on scientific publications and patent documents and contains more than 200 million documents. It is easily accessible via a simple Application Programming Interface (API) or via a web interface. Moreover, it is continuously being updated and can be extended to text corpora from other domains. We see this system as a general-purpose tool for future research applications in the social sciences and other domains.
translated by 谷歌翻译